Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.677
Filtrar
1.
Opt Lett ; 49(8): 2149-2152, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621098

RESUMO

Passively mode-locked fiber lasers based on a nonlinear polarization rotation (NPR) have attracted much attention due to their ability to generate short pulses with wide spectra and high peak power. However, environmental perturbations can easily cause the lasers to lose the mode-locked state and make it a challenge for practical application. The aim of this research is to improve the laser stability by inserting a Lyot filter into the mode-locked laser cavity. The experimental results indicate that the mode-locked state can be maintained when the radius of the fiber loop is changed from 7.5 to 1.5 cm, while the signal-to-noise ratio of the fundamental frequency remains almost the same. The tunability of the output power can be achieved by adding a half-wave plate (HWP) in the laser cavity without changing the pump power, while the mode-locked state remains stable. By adjusting the angle of the HWP2, the output power can be adjusted from 3.36 to 66.5 mW at repetition rate of 29.7 MHz.

2.
Environ Res ; : 118939, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38621629

RESUMO

The increased usage of rare earth elements (REEs) leads to the extensive exploitation of rare earth mines, and the REEs pollution in soil caused by the legacy mine tailings has brought great harm to environment and human health. Although Phytolacca americana can remove REEs from contaminated soil to some extent, there is still an urgent problem to improve its efficiency. Hyperaccumulator extract is a new organic material with potential in metal phytoextraction, but its role in REEs phytoremediation and the related underlying processes remain unclear. In this study, hyperaccumulator extracts from P. americana root (PR), stem (PS), leaf (PL) and EDTA were used to improve the phytoremediation efficiency of REEs with P. americana. Soil zymography was applied to assess the enzyme hotspots' spatial distribution in the rhizosphere, and the hotspots' microbial communities were also identified. The results indicated that the application of hyperaccumulator extracts improved the biomass and REEs uptake of P. americana, and the highest REEs content in plant was observed in the treatment of PS, which increased 299% compared to that of the control. Hotspots area of ß-glucosidase, leucine aminopeptidase and acid phosphatase were concentrated in the pant rhizosphere along the roots and increased 2.2, 5.3 and 2.2 times after PS application compared to unamended soils. The PS application increased the relative abundance of Proteobacteria, Cyanobacteria, Bacteroidota and Firmicutes phyla in rhizosphere. Soil fungi have a higher contribution on promoting REEs activation than that of bacteria. Available P and extractable REEs were leading predictors for the plant biomass and REEs concentrations. The co-occurrence network showed that the application of PS creates a more efficient and stable microbial network compared to other treatments. In conclusion, stem-derived hyperaccumulator extract is excellent in stimulating REEs phytoremediation with P. americana by improving hotspots microbial activities and form a healthy rhizosphere microenvironment.

3.
Front Pharmacol ; 15: 1367806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628640

RESUMO

Background: Cinnamaldehyde (CMD) is a major functional component of Cinnamomum verum and has shown treatment effects against diverse bone diseases. This study aimed to assess the anti-diabetic osteoporosis (DOP) potential of diabetes mellitus (DM) and to explore the underlying mechanism driving the activity of CMD. Methods: A DOP model was induced via an intraperitoneal injection of streptozocin (STZ) into Sprague-Dawley rats, and then two different doses of CMD were administered to the rats. The effects of CMD on the strength, remodeling activity, and histological structure of the bones were assessed. Changes in the netrin-1 related pathways also were detected to elucidate the mechanism of the anti-DOP activity by CMD. Results: CMD had no significant effect on the body weight or blood glucose level of the model rats. However, the data showed that CMD improved the bone strength and bone remodeling activity as well as attenuating the bone structure destruction in the DOP rats in a dose-dependent manner. The expression of netrin-1, DCC, UNC5B, RANKL, and OPG was suppressed, while the expression of TGF-ß1, cathepsin K, TRAP, and RANK was induced by the STZ injection. CMD administration restored the expression of all of these indicators at both the mRNA and protein levels, indicating that the osteoclast activity was inhibited by CMD. Conclusion: The current study demonstrated that CMD effectively attenuated bone impairments associated with DM in a STZ-induced DOP rat model, and the anti-DOP effects of CMD were associated with the modulation of netrin-1/DCC/UNC5B signal transduction.

4.
Acta Psychol (Amst) ; 246: 104274, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631151

RESUMO

OBJECTIVE: A plethora of studies have unequivocally established the profound significance of harmonious familial relationships on the psychological well-being of the elderly. In this study, we elucidate the intergenerational relationships, probing the association between frequent interactions or encounters with their children and the incidence of depression in old age. METHODOLOGY: We employed a retrospective cross-sectional study design, sourcing our data from the 2018 wave of the China Health and Retirement Longitudinal Study (CHARLS). To identify cases of depression, we utilized the 10-item Center for Epidemiologic Studies Depression Scale (CESD). Employing a five-fold cross-validation methodology, we endeavored to fashion five distinct machine learning models. Subsequently, we crafted learning curves to facilitate the refinement of hyperparameters, assessing model classification performance through metrics such as accuracy and the Area Under the Receiver Operating Characteristic (AUROC) curve. To further elucidate the relationship between variables and geriatric depression, logistic regression was subsequently applied. RESULTS: Our findings accentuated that sleep patterns emerged as the paramount determinants influencing the onset of depression in the elderly. Relationships with offspring ranked as the second most significant determinant, only surpassed by sleep habits. A negative correlation was observed between sleep patterns (Odds Ratio [OR]: 0.78, 95 % Confidence Interval [CI]: 0.75-0.81, P < 0.01), communication with offspring (OR: 0.86, 95 % CI: 0.82-0.90, P < 0.01), and the prevalence of depressive symptoms. Among the evaluated models, the k-Near Neighbor algorithm demonstrated commendable discriminative power. However, it was the Random Forest algorithm that manifested unparalleled discriminative prowess and precision, establishing itself as the most efficacious classifier. CONCLUSION: Prolonging the duration of nocturnal sleep, and elevating the frequency of communication with offspring have been identified as measures conducive to mitigating the onset of geriatric depression.

5.
MedComm (2020) ; 5(4): e528, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606362

RESUMO

Lipid metabolic reprogramming is closely related to tumor progression with the mechanism not fully elucidated. Here, we report the immune-regulated role of lanosterol synthase (LSS), an essential enzyme in cholesterol synthesis. Database analysis and clinical sample experiments suggest that LSS was lowly expressed in colon and breast cancer tissues, which indicates poor prognosis. The biological activity of tumor cell lines and tumor progression in NOD scid gamma (NSG) mice were not affected after LSS knockdown, whereas LSS deficiency obviously aggravated tumor burden in fully immunized mice. Flow cytometry analysis showed that LSS knockdown significantly promoted the formation of tumor immunosuppressive microenvironment, characterized by the increase in M2 macrophages and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), as well as the decrease in anti-tumoral T lymphocytes. With the inhibition of myeloid infiltration or loss function of T lymphocytes, the propulsive effect of LSS knockdown on tumor progression disappeared. Mechanistically, LSS knockdown increased programmed death ligand 1 (PDL1) protein stability by 2,3-oxidosqualene (OS) binding to PDL1 protein. Anti-PDL1 therapy abolished LSS deficiency-induced immunosuppressive microenvironment and cancer progression. In conclusion, our results show that LSS deficiency promotes tumor progression by establishing an OS-PDL1 axis-dependent immunosuppressive microenvironment, indicative of LSS or OS as a potential hallmark of response to immune checkpoint blockade.

6.
Int Immunopharmacol ; 133: 111958, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608441

RESUMO

The composition, quantity, and function of peripheral blood mononuclear cells (PBMCs) are closely correlated with tumorigenesis. However, the mechanisms of PBMCs in lung cancer are not clear. Mitochondria are energy factories of cells, and almost all cellular functions rely on their energy metabolism level. The present study aimed to test whether the mitochondrial function of PBMCs directly determines their tumor immune monitoring function. We recruited 211 subjects, including 105 healthy controls and 106 patients with recently diagnosed with lung cancer. The model of lung carcinogenesis induced by BaP was used in animal experiment, and the Bap carcinogenic metabolite, Benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide (BPDE), was used in cell experiment. We found that mitochondrial function of PBMCs decreased significantly in patients with new lung cancer, regardless of age. In vivo, BaP caused PBMC mitochondrial dysfunction in mice before the appearance of visible malignant tissue. Moreover, mitochondrial function decreased significantly in mice with lung cancers induced by BaP compared to those without lung cancer after BaP intervention. In vitro, BPDE also induced mitochondrial dysfunction and reduced the aggressiveness of PBMCs toward cancer cells. Furthermore, the changes in mitochondrial energy metabolism gene expression caused by BPDE are involved in this process. Thus, the mitochondrial function of PBMCs is a potential prognostic biomarker or therapeutic target to improve clinical outcomes in patients with lung cancer.

7.
J Orthop Surg Res ; 19(1): 216, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566125

RESUMO

PURPOSE: To analyze and study the clinical efficacy and imaging indexes of oblique lateral lumbar interbody fusion (OLIF) in the treatment of lumbar intervertebral foramen stenosis(LFS) caused by different causes. METHOD: 33 patients with LFS treated with OLIF from January 2018 to May 2022 were reviewed. Oswestry Dysfunction Index (ODI) and visual analogue scale (VAS) were calculated before and after operation. Segmental lordotic angle (SLA), lumbar lordotic angle (LLA) and segmental scoliosis angle (SSA), disc height (DH), posterior disc height (PDH), lateral disc height (LDH), foraminal height (FH), foramen width (FW) and foraminal cross-sectional area (FSCA) were measured before and after operation. RESULT: The VAS and ODI after operation were significantly improved as compared with those before operation. Compared with pre-operation, the DH, PHD increased by 67.6%, 94.6%, LDH increased by 107.4% (left), 101.7% (right), and FH increased by 30.2% (left), 34.5% (right). The FSCA increased by 93.1% (left), 89.0% (right), and the FW increased by 137.0% (left), 149.6% (right). The postoperative SSA was corrected by 74.5%, the postoperative SLA, LLA were corrected by 70.2%, 38.1%, respectively. All the imaging indexes were significantly improved (p < 0.01). CONCLUSION: The clinical efficacy and imaging data of OLIF in the treatment of LFS caused by low and moderate lumbar spondylolisthesis, intervertebral disc bulge and reduced intervertebral space height, degenerative lumbar scoliosis, articular process hyperplasia or dislocation have been well improved. OLIF may be one of the better surgical treatments for LFS caused by the above conditions.


Assuntos
Lordose , Escoliose , Fusão Vertebral , Humanos , Escoliose/diagnóstico por imagem , Escoliose/cirurgia , Escoliose/etiologia , Constrição Patológica , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Lordose/etiologia , Fusão Vertebral/métodos
8.
Curr Neurovasc Res ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38561617

RESUMO

OBJECTIVE: Autonomic Nervous System (ANS) dysfunction may be involved in the pathogenesis of Cerebral Small Vessel Disease (CSVD). The study aimed to explore the relationship between Recent Small Subcortical Infarct (RSSI) and Blood Pressure Variability (BPV), and Heart Rate Variability (HRV). METHODS: A total of 588 patients from the CSVD registration research database of Henan Province were included in this study, and were divided into two groups according to the presence of RSSI. Clinical data, including demographic characteristics, disease history, laboratory indexes, 24-hour ambulatory blood pressure and electrocardiogram indicators, and imaging markers of CSVD, were collected. Univariate and binary logistic regression analyses were used to study the relationship between RSSI and indicators of laboratory, HRV and BPV in the CSVD population. RESULTS: Multivariate analysis showed that higher 24-hour mean Diastolic Blood Pressure (DBP)[Odds Ratios (OR)=1.083,95% Confidence Intervals (CI)=(1.038,1.129), p < 0.001], Standard Deviation (SD) of 24-hour DBP [OR=1.059,95%CI=(1.000,1.121), p = 0.049], nocturnal mean Systolic Blood Pressure (SBP) [OR=1.020,95%CI=(1.004,1.035), p = 0.012], nocturnal mean DBP [OR=1.025,95%CI=(1.009,1.040), p = 0.002] were independent risk factors for RSSI. In contrast, the decrease of the standard deviation of N-N intervals (SDNN) [OR=0.994,95%CI=(0.989,1.000), p = 0.035] was beneficial to the occurrence of RSSI. In addition, neutrophil counts [OR=1.138,95%CI=(1.030,1.258), p = 0.011], total cholesterol (TC) [OR=1.203,95%CI=(1.008,1.437), p = 0.041] and High-Density Lipoprotein (HDL) [OR=0.391, 95%CI=(0.195,0.786), p = 0.008] were also independently associated with the occurrence of RSSI. After adjusting for confounding factors, except for TC, the other factors remained associated with the occurrence of RSSI. CONCLUSION: Increased 24-hour mean DBP, nocturnal mean SBP and DBP, SD of 24-hour DBP and decreased SDNN were independently correlated with RSSI occurrence, suggesting that sympathetic overactivity plays a role in the pathogenesis of RSSI.

9.
Adv Sci (Weinh) ; : e2401292, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561948

RESUMO

Graphite is considered to be the most auspicious anode candidate for potassium ion batteries. However, the inferior rate performances and cycling stability restrict its practical applications. Few studies have investigated the modulating the graphitization degree of graphitic materials. Herein, a nitrogen-doped carbon-coated carbon fiber composite with tunable graphitization (CNF@NC) through etching growth, in-situ oxidative polymerization, and subsequent carbonization process is reported. The prepared CNF@NC with abundant electrochemical active sites and a rapid K+/electron transfer pathway, can effectively shorten the K+ transfer distance and promote the rapid insertion/removal of K+. Amorphous domains and short-range curved graphite layers can provide ample mitigation spaces for K+ storage, alleviating the volume expansion of the highly graphitized CNF during repeated K+ insertion/de-intercalation. As expected, the CNF@NC-5 electrode presents a high initial coulombic efficiency (ICE) of 69.3%, an unprecedented reversible volumetric capacity of 510.2 mA h cm-3 at 0.1 A g-1 after 100 cycles with the mass-capacity of 294.9 mA h g-1. The K+ storage mechanism and reaction kinetic analysis are studied by combining in-situ analysis and first-principles calculation. It manifests that the K+ storage mechanism in CNF@NC-5 is an adsorption-insertion-insertion mechanism (i.e., the "1+2" model). The solid electrolyte interphase (SEI) film forming is also detected.

10.
PLoS One ; 19(4): e0301057, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557552

RESUMO

BACKGROUND: Ductal carcinoma in situ with microinvasion (DCIS-MI) is a special type of breast cancer. It is an invasive lesion less than 1.0 mm in size related to simple ductal carcinoma in situ (DCIS). Lymph node metastasis (LNM) in DCIS-MI often indicates a poor prognosis. Therefore, the management of lymph nodes plays a vital role in the treatment strategy of DCIS-MI. Since DCIS-MI is often diagnosed by postoperative paraffin section and immunohistochemical detection, to obtain the best clinical benefits for such patients, we aim to establish and verify a nomogram to predict the possibility of lymph node metastasis in DCIS-MI patients and help preoperative or intraoperative clinical decision-making. METHODS: A retrospective analysis of patients with DCIS-MI in the Surveillance, Epidemiology, and End Results (SEER) database from 2010 to 2019 was performed. The study cohort was randomly divided into a training cohort and a validation cohort at a ratio of 7:3. The risk factors were determined by univariate and multivariate logistic regression analyses in the training cohort, and a nomogram was constructed. The receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the nomogram in the training set and validation set. An independent data cohort was obtained from the Shanghai Jiao Tong University Breast Cancer Database (SJTU-BCDB) for external validation. RESULTS: This study included 3951 female patients from SEER with DCIS-MI, including 244 patients with regional lymph node metastasis, accounting for 6.18% of the total. An independent test set of 323 patients from SJTU-BCDB was used for external validation. According to the multifactorial logistic regression analysis results, age at diagnosis, ethnicity, grade, and surgical modality were included in the prediction model. The areas under the ROC curves (AUCs) were 0.739 (95% CI: 0.702~0.775), 0.732 (95% CI: 0.675~0.788), and 0.707 (95%CI: 0.607-0.807) in the training, validation and external test groups, suggesting that the column line graphs had excellent differentiation. The calibration curves slope was close to 1, and the model's predicted values were in good agreement with the actual values. The DCA curves showed good clinical utility. CONCLUSION: In this study, we constructed accurate and practical columnar maps with some clinical benefit to predict the likelihood of lymph node metastasis in patients with postoperatively diagnosed DCIS-MI and provide a reference value for specifying treatment strategies.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Humanos , Feminino , Metástase Linfática , Nomogramas , Estudos Retrospectivos , China , Neoplasias da Mama/diagnóstico
11.
Anal Chem ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606798

RESUMO

Modulating mass transfer is crucial for optimizing the catalytic and separation performances of porous materials. Here, we systematically developed a series of continuously tunable MOFs (CTMOFs) that exhibit incessantly increased mass transfer. This was achieved through the strategic blending of ligands with different lengths and ratios in MOFs featuring the fcu topology. By employing a proportional mixture of two ligands in the synthesis of UiO-66, the micropores expanded, facilitating faster mass transfer. The mass transfer rate was evaluated by dye adsorption, dark-field microscopy, and gas chromatography (GC). The GC performance proved that both too-fast and too-slow mass transfer led to low separation performance. The optimized mass transfer in CTMOFs resulted in an exceptionally high separation resolution (5.96) in separating p-xylene and o-xylene. Moreover, this study represents the first successful use of MOFs for high-performance separation of propylene and propane by GC. This strategy provides new inspiration in regulating mass transfer in porous materials.

12.
Pharmacol Res ; 203: 107172, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583685

RESUMO

Although anti-TNF antibodies are extensively used to treat Crohn's disease (CD), a significant proportion of patients, up to 40%, exhibit an inadequate response to this therapy. Our objective was to identify potential targets that could improve the effectiveness of anti-TNF therapy in CD. Through the integration and analysis of transcriptomic data from various CD databases, we found that the expression of AQP9 was significantly increased in anti-TNF therapy-resistant specimens. The response to anti-TNF therapy in the CD mouse model was significantly enhanced by specifically inhibiting AQP9. Further experiments found that the blockade of AQP9, which is dominantly expressed in macrophages, decreased inflamed macrophage functions and cytokine expression. Mechanistic studies revealed that AQP9 transported glycerol into macrophages, where it was metabolized to LPA, which was further metabolized to LPA, resulting in the activation of the LPAR2 receptor and downstream hippo pathway, finally promoting the expression of cytokines, especially IL23 and IL1ß⊡ Taken together, the expansion of AQP9+ macrophages is associated with resistance to anti-TNF therapy in Crohn's disease. These findings indicated that AQP9 could be a potential target for enhancing anti-TNF therapy in Crohn's disease.

13.
Heart Rhythm ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588992

RESUMO

BACKGROUND: The aorta-mitral annulus conjunction (AMC) is uncommon site of origin of focal atrial tachycardias (AT). Hence, the electrophysiological and ablation target characteristics are poorly described. OBJECTIVE: To describe the characteristics of AMC AT in detail. METHODS: The study enrolled 650 patients with AT, 21 (3.2%) of whom had AT originating from AMC. A comprehensive evaluation, including electrocardiography, electrophysiologic study, CT scan, and intracardiac echocardiography (ICE) was performed. RESULTS: The majority (90.5%) of ATs occurred spontaneously. The average age of this group was 48.9±21.6 years, with 12 females (57.1%). Seventeen patients had a typical biphasic P wave with a prominent positive component. The earliest activation site in the right atrium was near the His bundle with average activation -10.3±6.0 ms preceding the P wave. The successful ablation targets were distributed as follows: 1 case at 9 o'clock, 6 cases at 10 o'clock, 7 cases at 11 o'clock, 6 cases at 12 o'clock, and 1 case in the left coronary cusp (LCC). The local AMC potential differed from the commonly perceived annular potential, and was characterized by a large A and a small V (A/V ratio >1). The angle of encroachment on the LA anterior wall, compressed by the LCC, was significantly smaller in the AMC-AT group compared to the control group, which may have contributed to the arrhythmia substrate (141.7°±11.5° vs. 155.2°±13.9°, p = 0.026). CONCLUSION: A new strategy for mapping AMC ATs has been introduced. The ablation target should have an A/V ratio greater than 1.

14.
J Nanobiotechnology ; 22(1): 145, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566211

RESUMO

Resistance to androgen receptor (AR) inhibitors, including enzalutamide (Enz), as well as bone metastasis, are major challenges for castration-resistant prostate cancer (CRPC) treatment. In this study, we identified that miR26a can restore Enz sensitivity and inhibit bone metastatic CRPC. To achieve the highest combination effect of miR26a and Enz, we developed a cancer-targeted nano-system (Bm@PT/Enz-miR26a) using bone marrow mesenchymal stem cell (BMSC) membrane and T140 peptide to co-deliver Enz and miR26a. The in vitro/in vivo results demonstrated that miR26a can reverse Enz resistance and synergistically shrink tumor growth, invasion, and metastasis (especially secondary metastasis) in both subcutaneous and bone metastatic CRPC mouse models. We also found that the EZH2/SFRP1/WNT5A axis may be involved in this role. These findings open new avenues for treating bone metastatic and Enz-resistant CRPC.


Assuntos
Benzamidas , Feniltioidantoína , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Animais , Camundongos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Linhagem Celular Tumoral , Nitrilas/farmacologia
15.
BMC Ophthalmol ; 24(1): 155, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594682

RESUMO

INTRODUCTION: In recent years, insulin eye drops have attracted increasing attention from researchers and ophthalmologists. The aim of this study was to investigate the efficacy and possible mechanism of action of insulin eye drops in diabetic mice with corneal wounds. METHODS: A type 1 diabetes model was induced, and a corneal epithelial injury model of 2.5 mm was established. We used corneal fluorescein staining, hematoxylin-eosin (H-E) staining and the Cochet-Bonnet esthesiometer to examine the process of wound healing. Subsequently, the expression levels of Ki-67, IL-1ß, ß3-tubulin and neuropeptides, including substance P (SP) and calcitonin gene-related peptide (CGRP), were examined at 72 h after corneal injury. RESULTS: Fluorescein staining demonstrated an acceleration of the recovery of corneal epithelial injury in diabetic mice compared with the saline treatment, which was further evidenced by the overexpression of Ki-67. Moreover, 72 h of insulin application attenuated the expression of inflammatory cytokines and neutrophil infiltration. Remarkably, the results demonstrated that topical insulin treatment enhanced the density of corneal epithelial nerves, as well as neuropeptide SP and CGRP release, in the healing cornea via immunofluorescence staining. CONCLUSIONS: Our results indicated that insulin eye drops may accelerate corneal wound healing and decrease inflammatory responses in diabetic mice by promoting nerve regeneration and increasing levels of neuropeptides SP and CGRP.


Assuntos
Lesões da Córnea , Diabetes Mellitus Experimental , Epitélio Corneano , Ceratite , Camundongos , Animais , Epitélio Corneano/metabolismo , Insulina , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Soluções Oftálmicas , Antígeno Ki-67/metabolismo , Córnea/fisiologia , Lesões da Córnea/tratamento farmacológico , Cicatrização , Ceratite/metabolismo , Fluoresceína/metabolismo , Inflamação/metabolismo
16.
Neuroscience ; 546: 157-177, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574797

RESUMO

Epilepsy is one of the most widespread and complex diseases in the central nervous system (CNS), affecting approximately 65 million people globally, an important factor resulting in neurological disability-adjusted life year (DALY) and progressive cognitive dysfunction. Medication is the most essential treatment. The currently used drugs have shown drug resistance in some patients and only control symptoms; the development of novel and more efficacious pharmacotherapy is imminent. Increasing evidence suggests neuroinflammation is involved in the occurrence and development of epilepsy, and high expression of NLRP3 inflammasome has been observed in the temporal lobe epilepsy (TLE) brain tissue of patients and animal models. The inflammasome is a crucial cause of neuroinflammation by activating IL-1ß and IL-18. Many preclinical studies have confirmed that regulating NLRP3 inflammasome pathway can prevent the development of epilepsy, reduce the severity of epilepsy, and play a neuroprotective role. Therefore, regulating NLRP3 inflammasome could be a potential target for epilepsy treatment. In summary, this review describes the priming and activation of inflammasome and its biological function in the progression of epilepsy. In addition, we reviewes the current pharmacological researches for epilepsy based on the regulation of NLRP3 inflammasome, aiming to provide a basis and reference for developing novel antiepileptic drugs.

17.
Proc Natl Acad Sci U S A ; 121(16): e2315958121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588427

RESUMO

The ability of neurons to rapidly remodel their synaptic structure and strength in response to neuronal activity is highly conserved across species and crucial for complex brain functions. However, mechanisms required to elicit and coordinate the acute, activity-dependent structural changes across synapses are not well understood, as neurodevelopment and structural plasticity are tightly linked. Here, using an RNAi screen in Drosophila against genes affecting nervous system functions in humans, we uncouple cellular processes important for synaptic plasticity and synapse development. We find mutations associated with neurodegenerative and mental health disorders are 2-times more likely to affect activity-induced synaptic remodeling than synapse development. We report that while both synapse development and activity-induced synaptic remodeling at the fly NMJ require macroautophagy (hereafter referred to as autophagy), bifurcation in the autophagy pathway differentially impacts development and synaptic plasticity. We demonstrate that neuronal activity enhances autophagy activation but diminishes degradative autophagy, thereby driving the pathway towards autophagy-based secretion. Presynaptic knockdown of Snap29, Sec22, or Rab8, proteins implicated in the secretory autophagy pathway, is sufficient to abolish activity-induced synaptic remodeling. This study uncovers secretory autophagy as a transsynaptic signaling mechanism modulating synaptic plasticity.


Assuntos
Proteínas de Drosophila , Junção Neuromuscular , Animais , Humanos , Junção Neuromuscular/metabolismo , Sinapses/metabolismo , Drosophila/fisiologia , Neurônios/metabolismo , Autofagia/genética , Plasticidade Neuronal/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transmissão Sináptica/fisiologia , GTP Fosfo-Hidrolases/metabolismo
18.
Sci Total Environ ; 928: 172321, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604373

RESUMO

Understanding of the photochemical ozone (O3) pollution over the Pearl River Estuary (PRE) of southern China remains limited. We performed an in-depth analysis of volatile organic compounds (VOCs) data collected on an island (i.e., the Da Wan Shan Island, DWS) located at the downwind of Pearl River Delta (PRD) from 26 November to 15 December 2021. Abundances of O3 and its precursors were measured when the air masses originated from the inland PRD. We observed that the VOCs levels at the DWS site were lower, while the mixing ratio of O3 was higher, compared to those reported at inland PRD, indicating the occurrence of photochemical consumption of VOCs during the air masses transport, which was further confirmed by the composition and diurnal variations of VOCs, as well as ratios of specific VOCs. The simulation results from a photochemical box model showed that the O3 level in the outflow air masses of inland PRD (O3(out-flow)) was the dominant factor leading to the intensification of O3 pollution and the enhancement of atmospheric radical concentrations (ARC) over PRE, which was mainly contributed by the O3 production via photochemical consumption of VOCs during air masses transport. Overall, our findings provided direct quantitative evidence for the roles of outflow O3 and its precursors from inland PRD on O3 abundance and ARC over the PRE area, highlighting that alleviation of O3 pollution over PRE should focus on the impact of photochemical loss of VOCs in the outflow air masses from inland PRD.

19.
Sci Rep ; 14(1): 8912, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632297

RESUMO

Carbon-based nanomaterials, such as carbon nanoplatelets, graphene oxide, and carbon quantum dots, have many possible end-use applications due to their ability to impart unique mechanical, electrical, thermal, and optical properties to cement composites. Despite this potential, these materials are rarely used in the construction industry due to high material costs and limited data on performance and durability. In this study, domestic coal is used to fabricate low-cost carbon nanomaterials that can be used economically in cement formulations. A range of chemical and physical processing approaches are employed to control the size, morphology, and chemical functionalization of the carbon nanomaterial, which improves its miscibility with cement formulations and its impact on mechanical properties and durability. At loadings of 0.01 to 0.07 wt.% of coal-derived carbon nanomaterial, the compressive and flexural strength of cement samples are enhanced by 24% and 23%, respectively, in comparison to neat cement. At loadings of 0.02 to 0.06 wt.%, the compressive and flexural strength of concrete composites increases by 28% and 21%, respectively, in comparison to neat samples. Additionally, the carbon nanomaterial additives studied in this work reduce cement porosity by 36%, permeability by 86%, and chloride penetration depth by 60%. These results illustrate that low-loadings of coal-derived carbon nanomaterial additives can improve the mechanical properties, durability, and corrosion resistance of cement composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...